Using CART to Segment Road Images
نویسندگان
چکیده
The 2005 DARPA Grand Challenge is a 132 mile race through the desert with autonomous robotic vehicles. Lasers mounted on the car roof provide a map of the road up to 20 meters ahead of the car but the car needs to see further in order to go fast enough to win the race. Computer vision can extend that map of the road ahead but desert road is notoriously similar to the surrounding desert. The CART algorithm (Classification and Regression Trees) provided a machine learning boost to find road while at the same time measuring when that road could not be distinguished from surrounding desert.
منابع مشابه
Identification of High Crash Road Segment using Genetic Algorithm and Dynamic Segmentation
This paper presents an evolutionary algorithm for recognizing high and low crash road segments using Genetic Algorithm as a dynamic segmentation method. Social and economic costs as well as physical and mental injuries make the governments perceiving to road safety indexes in order to diminish the consequences of road accidents. Due to the limitation of budget for safety...
متن کاملMarkov Random Field for Road Extraction Applications in Remote Sensing Images
Bayesian methods coupled with Markovian frameworks has several applications in remote sensing images processing, such as the pixel level applications like filtering, segmentation and classification, and the higher level applications like object recognition and organization etc. This article illustrates the powerfulness of Markovian model at two levels for the road extraction problem in remote s...
متن کاملEvaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution
Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملA Novel Method for Road Centerline Extraction from High Spatial Resolution Satellite Images
An integrated method for road centerline extraction has been proposed in this paper which consists of four main steps. First, the Graph Cut algorithm using proposed similarity function is employed to segment the image, and the segmented image is thresholded to initial binary skeleton. Second, the road skeleton is refined by using a series of morphology operations and shape features. Third, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005